תכנון מסדי נתונים:

- תהי r התלות הפונקציונלית, תהי r הסכמה של r ותהיינה r ותהיינה r אז הסכמה של r הסכמה של r הסכמה של r ותהיינה r אז r הסכמה של r הידים של r הסכמה של r הידים של r הידים של r הידים של r הידים של r
 - $X{
 ightarrow} Y$ או פשוט $R{\,\square} X{
 ightarrow} Y$ נסמן R נסמן $R{\,\square} X{
 ightarrow} Y$ או או הסכמה $R{\,\square} X{
 ightarrow} Y$ או פשוט $R{\,\square} X{
 ightarrow} Y$

קבוצת תלויות פונקציונליות F

- $r \square X {
 ightarrow} Y$ מתקיים $X {
 ightarrow} Y \square F$ אם לכל $r \square F$.
- $r \square F \implies r \square X {\rightarrow} Y, r$ אם לכל רלציה $F \square X {\rightarrow} Y$
 - $F\square X{
 ightarrow} R$ של (superkey) מפתח-על X
- על מפתח-על מפתח-על אם אם אם אם אם אם אם (candidate key) מפתח קביל א מפתח אם א מפתח אם אם אם אם א מפתח-על מפתח-על מפתח איל א מפתח מיל א מפתח מיל א מפתח מיל א מפתח מיל אוני מפתח-על מ
 - המפתח הראשי: אחד מהמפתחות הקבילים
 - $F^+ \equiv \{X \rightarrow Y \mid F \square X \rightarrow Y\}$ הסגור של F הסגור של •
 - $X{
 ightarrow}Y$ אם בהכרח גם את מקיימת את שמקיימת כל רלציה שם כל F^+ אם מקיימת בהכרח את ג $X{
 ightarrow}Y$

F+-לי הסק כללי הארמסטרונג: אקסיומות ארמסטרונג

- $X {\rightarrow} Y$ אז $Y {\square} X {\square} R$ אם (reflexivity) אז A1
- $XZ \rightarrow YZ$ אז $Z \square R$ ו- $X \rightarrow Y$ ויאם (augmentation) אכללה (A2
- $X \rightarrow Z$ אז $Y \rightarrow Z$ ו- אם $Y \rightarrow X$ ו- אז (transitivity) טרנזיטיביות A3
 - $X \rightarrow YZ$ אז $X \rightarrow Z$ ו-X ו-X (union) איחוד A4
 - $X \rightarrow Z$ אז $Z \square Y$ ו- אם (decomposition) פרוק A5
- $WX \rightarrow Z$ אז $WY \rightarrow Z$ ו-X ו-X ו-X אם $WY \rightarrow Z$ ו אז אז אז אד אוישיביות-למחצה (pseudo-transitivity)

 $X+F \equiv \{A \mid F \square X \rightarrow A\}$ הוא F הוא פונקציונליות פונקציונליות בהינתן על בהינתן אל (closure) הסגור

X+F אלגוריתם לחישוב

Result := X;

repeat

for each $Y \rightarrow Z \square F$

if $Y \square Result$

then $Result := Result \cup Z$

until no more changes to Result.

נימלי של קבוצת תלויות: הגדרה קב' תלויות פונקציונליות F מינימלית קב' תלויות פונקציונליות F מתקיים אם לכל F תכונה יחידה באגפי ימין של כל התלויות) $ Y =1$.1 (תכונה יחידה באגפי ימין של כל התלויות) $(F-\{X{\longrightarrow}Y\})^+\neq F^+$.2 .2 לכל F מתקיים F מתקיים F F שמאל F על תלות לא מיותרת) של תלות לא מיותרת)	•
כרח בהכרח בהכרוק של F_C קב' מינימלית כך של $F_C^+=F^+$ (תמיד קיים בגלל פרוק/איחוד; לא בהכרח יחיד)	
נימלי של קב' תלויות: אלגוריתם פצל את התלויות ב- F לתכונות יחידות באגפי ימין	
כל עוד יש שינויים ב- F בצע	.2
$B \square X^+_{F'}$ כך ש- $X{ o}B \square F$ אם קיימת תלות ו $X \to B \square F$ כך ש- $X \to B \square F$, החלף את ו $Y' = F - \{X \to B\}$	
$X\!\! o\!\!B \Box F$ אם קיימת תלות .ii אם קיימת תלות $A \Box X$ ותכונה $A \Box X$ כך ש $A \Box X$ אותכונה $A \Box X$ אחלף את $A \Box A \to B$ עולף את $A \Box A \to B$	
שימור מידע: הגדרה	

- :R של סכמה רלציונית (decomposition) של $R = R_1 \cup ... \cup R_n$ -ער כך $\sigma = \{R_1, ..., R_n\}$ קב' סכמות
- של תלויות פונקציונליות בהינתן משמר (lossless-join decomposition) פרוק משמר מידע פרוק

$${}_{,}R$$
מעל r רלציה כך שלכל כך כך כך $\sigma{=}\{R_1,...,R_n\}$ פרוק איז ר $r=\pi_{R1}r~\square~\dots~\square~\pi_{Rn}r$ אז רוא $r~\square~F$

- $r \square \pi R1r \square \ldots \square \pi Rnr$ בפרוק שאינו משמר מידע עלול לקרות באי-שימור מידע לא מאבדים רשומות — להפך!
 - בפרוק משמר מידע, אחת מתת-הסכמות חייבת להכיל מפתח של הסכמה

משפט: בהנתן קבוצת אטריביוטים U, בהנתן סכמה R[U], ובהנתן קבוצת תלויות פונקצונליות F, בהנתן פירוק אמ"מ מידע מידע משמר הפירוק, R1[U1], R2[U2] ל-2 סכמות, R ל-2 סכמות, R ל-2 סכמות, פירוק הוא משמר מידע אמ"מ קבוצת האטריביוטים שניהם. על של U1 או U1 או של שניהם. $U1 \cap U2$

שימור תלויות: הגדרה

- סכמה על של קב' תלויות פונקציונליות על תת-סכמה אל על הלוינת פונקציונליות על אל אל F של של ההיטל על אל F הוא הוא $\pi_{Ri}\,F=\{X{\longrightarrow}Y\,|\,X{\longrightarrow}Y{\subseteq}F^+\,\square\,X{\subseteq}Y{\subseteq}R_i\}$ התלויות מתוך Fהרלוונטיות ל- V
- R_1,\dots,R_n מעל תת-הסכמות משמר r_1,\dots,r_n אם לכל $\sigma=\{R_1,\dots,R_n\}$ מעל משמר תלויות פרוק $\sigma=\{R_1,\dots,R_n\}$ לכל $r_i = 1,\dots,n$ לכל $r_i = 1,\dots,n$ לכל $r_i = 1,\dots,n$ מעל קבוצות האטריביוטים מוכיח את $r_i = 1,\dots,n$ אם האיחוד של כל ההיטלים של $r_i = 1,\dots,n$
 - F משפט: פרוק $\sigma=\{R_1,\ldots,R_n\}$ משפט: פרוק משפט: אמר $(\pi_{R1}F \;\square\;\ldots\;\square\;\pi_{Rn}F)^+=F^+$ אמר
 - $X_{\pi R i F}^{+} = X_{F}^{+} \cap R_{i}$ אז $X \square R_{i}$ מענה: אם

שימור תלויות: אלגוריתם לבדיקה

 $X^+_{\pi R1\;F}$ את אם את אחשב אר לכל תלות לכל הלות הפונקציונליות פונקציונליות $\sigma=\{R_1,\dots,R_n\}$ חשב הינתן פרוק יש"י:

Z := X;

repeat

for
$$i = 1,...,n$$
 do
 $Z := Z \cup (((Z \cap Ri) + F) \cap Ri)$

until no more changes to Z.

 $.Y\square Z$ נשמרת אםם בסיום $X{
ightarrow} Y$

משמר תלויות אםם כל תלות $X{\rightarrow}Y{\square}F$ נשמרת. σ

הגדרה:BCNF

F היא ב-Boyce-Codd Normal Form בהינתן קב' תלויות סכמה רלציונית היא ב-Boyce-Codd Normal Form אם לכל $X {\longrightarrow} Y \square F^+$ אם לכל אם לכל לא טריוויאלית, אוניא

אלגוריתם פרוק ל-BCNF

הפרוק משמר מידע

אינו מבטיח שימור תלויות (גם אם קיים פרוק משמר תלויות ל-BCNF!) אינו מבטיח שימור למצוא פרוקים שונים

:3NF (Third Normal Form)

- לא $X {
 ightarrow} Y {
 ightarrow} F^+$ סכמה רלציונית F אם לכל בהינתן קב' תלויות פונקציונליות F אם לכל מפתח-על של F או שכל תכונות F נמצאות במפתחות קבילים של F טריוויאלית. F מפתח-על של F או שכל תכונות F מצאות במפתחות קבילים של F
 - כל סכמה ב-BCNF, לא בהכרח להפך
 - מונעת BCNF- מאפשרת כפילויות אפשרת 3NF •
 - משמר מידע ותלויות ל-3NF.

3NF-אלגוריתם פרוק ל

1. מצא כיסוי מינימלי לקבוצת התלויות הנתונה $X \rightarrow A_1 \dots A_n$ עם אותו אגף שמאל X, אחד את התלויות ל $X \rightarrow A_1, \dots, X \rightarrow A_n$ לכל קבוצת תלויות לכל לכל אותו אגף שמאל 2. עצור -3NF אז R כבר ב- $X \rightarrow A_1 ... A_n$ עצור אם קיימת תלות $X \rightarrow A_1 ... A_n$ $XA_1...A_n$ בור תת-סכמה $X \rightarrow A_1...A_n$ לכל תלות R אם אף תת-סכמה שהיא מפתח קביל של R, הוסף תביל מפתח קביל כלשהו של עוצר ומוצא פרוק משמר מידע ותלויות $\pi_{Ri}F$ בהינתן 3NF-ב R_i (פונקציונליות+רב-ערכיות) קבוצת תלויות D $r\,\Box d$ מתקיים $d\,\Box D$ אם לכל $r\,\Box D$ $r \square D \implies r \square d$, רלציה, אם לכל רלשהי) אם תלות כלשהי תלות (כאשר dאםם כל D^+ אםם נמצאת ב-ערכית של (תלות פונקציונלית/רב-ערכית D^+ אם הוא D^+ אם כל הוא D^+ $(d \,\,$ את בהכרח בהכרח מקיימת את רלציה שמקיימת את כללי הסק לתלויות פונק' + רב-ערכיות (רק לתלויות פונקציונליות!) בתוקף (רק לתלויות פונקציונליות!) :(complementation) השלמה $X\square R$ $\!-\!X\!-\!Y$ אז $X\square Y$ אם :(multi-valued aug.) הכללה רב-ערכית A5 $WX\square VY$ אז $V\square W$ ו-אם $X\square Y$:(multi-valued trans.) טרנזיטיביות רב-ערכית A6 $X\square Z\!\!-\!Y$ אז $Y\square Z\!\!-\!1$ אם Y $X \square Y$ אז $X \longrightarrow Y$ אם (doubling): אכפלה A7 $Z\square Y$ אם (merging) מיזוג מיזוג A8 $X {\rightarrow} Z$ אז $W {\rightarrow} Z$ ו- $W {\cap} Y {=} \emptyset$ אז ער ער וקיימת WA1-A8 ע"י שיר להוכיח את להוכיח אפשר : $oldsymbol{D}\Box oldsymbol{d}$:(multi-valued union) איחוד רב-ערכי $X\square YZ$ אז $X\square Z$ -ו אם Y(ראינו הוכחה בשקף הקודם) :(multi-valued intersection) זיתוך רב-ערכי $X\square Y\cap Z$ אז $X\square Z$ -ו אם $X\square Y$:(multi-valued difference) הפרש רב-ערכי

 $X\square Y$ ע אז $X\square Z$ -1 ווער אם $X\square Y$

4NF (Fourth Normal Form)

סכמה רלציונית A היא ב-4NF בהינתן קב' תלויות פונקציונליות ורב-ערכיות אם לכל תלות היא ב-2NF בהינתן קב' עלויות או או או לא A או לא טריוויאלית, או מפתח-על של A

פרוק ל-4NF

- בדומה לפרוק ל-BCNF, תמיד קיים פרוק משמר מידע ל-4NF; לא תמיד קיים פרוק משמר תלויות
 - :4NF- אלגוריתם לפרוק משמר מידע ל

R כל עוד קיימת סכמה

 $X\square Y\square\pi_R D$ ותלות לא טריוויאלית

R של של מפתח-על מפתח-על איננו איננו $X \cap Y = \emptyset$ כך ע

R-Yו- ו-X את א לשתי תת-סכמות: X ו-X