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1 Introduction & Motivation

Again tormenting the reader with English to bring some logic insight, we present
an alternative approach for dealing with what the author believes to be the single
hardest subject taught in the Logic & Set Theory course for the CS faculty of
the Technion: Definability. Proving a set to be definable is quite a bit of work in
the 5-step method presented in class, and the usage of the compactness theorem
can be quite confusing. Worse yet, the concept of a definable set is difficult to
grasp, and there is very little intuition to lead us, given a set, to a conclusion
as to whether it is definable or not.

I will present here a theorem which will link formal logic with calculus.
Surprisingly enough, it can greatly simplify handling of definability. Our ba-
sic strategy will be defining a limit of assignments — this will not be diffi-
cult when viewing assignments as infinite binary vectors. We will then show
that for a set of assignments to be definable, it has to, informally, contain
all of its limits, and vice versa. This makes it easy to see that the set K =
{z ∈ ASS|z gives only a finite number of atoms the value 1} is not definable, as,
in a sense, it “converges” to zT, which assigns 1 to all atoms, and is therefore
not in the set. The concept of a limit is relatively familiar, and will greatly
assist viewing this simply.

While the theorem can be used to directly show definability (or, usually, lack
thereof), it has a more important intuitive property: It is relatively intuitive to
see whether or not a set of assignments is closed (contains all of its limits), and
this can put a student on the right path to answering a prove/disprove question
correctly, without making explicit use of the theorem.

2 Definitions

We will first begin with a definition of limits of sequences of assignments, similar
in concept to the idea of a limit of sequences of real numbers.

Note 1. We will use the ⊆ notation between sequences and sets to indicate that
every member of the sequence is also a member of the set.

Definition 1. Let {zn}∞n=0 ⊆ ASS be a sequence of assignments in proposi-
tional calculus. We will say that the sequence is convergent and that it has the
limit limn→∞ zn = z if for every i ∈ N there exists Ni such that if n > Ni, then
zn and z agree on the first i atoms, or formally, ∀j ≤ i, zn(j) = z(j).
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It’s easy to see that one can define the limit equivalently by only checking
that there exists N ′

i for which n > N ′
i implies that zn(pi) = z(pi): if the previous

definition holds, then N ′
i = Ni provides this condition. If this condition holds,

Ni = maxj≤i N ′
j will give the previous one. This definition of a limit is more

intuitive, but our first definition is used in our proofs.

Example 1. Consider the sequence {zn}∞n=0 in which zn gives all of the atoms
before pn 1, and the rest 0. Formally,

zn(pi) =

{
1, i ≤ n

0, i > n

If viewed as a sequence of infinite binary vectors, this sequence looks like
this:

z0 =1000000 . . .

z1 =1100000 . . .

z2 =1110000 . . .

...

It is fairly easy to see that this sequence converges to zT, taking Ni = i.
For each atom pi, starting from the ith assignment, all of the assignments give
1 to pi and all of the atoms before it, which is exactly what zT would give.
Formally, we take Ni = i. Immediately from our definition of the sequence, for
all n > i, j ≤ i, zn(pj) = 1 = zT(pj), and thus we have proven limn→∞ = zT

directly by definition.
An easier way to view this would be by the alternative definition of a limit.

For each atom pi, there is some point in the sequence at which all assignments
start giving it 1 forever. Formally, we take N ′

i = i, and again by the definition
of our sequence, for all n > N ′

i , zn(pi) = 1 = zT(pi). In a sense, for every i,
limn→∞ zn(pi) = 1 = zT(pi), and this is an equivalent definition.

Definition 2. Let K ⊆ ASS be a set of assignments. If every convergent
sequence {zn}∞n=0 ⊆ K satisfies limn→∞ zn ∈ K, we will say that K is closed.

Example 2. Take Kfin, that is, the set of assignments which give 1 to at most
a finite number of atoms. We can see that, for the sequence {zn}∞n=0 we defined
earlier, {zn}∞n=0 ⊆ Kfin: Each assignment zn gives only a finite number (n) of
atoms the value 1. However, we’ve shown limn→∞ zn = zT, and as zT /∈ Kfin,
we see that Kfin is not closed.

Theorem 1 (Shinji’s Theorem). Any set of assignments K is closed if and only
if it is definable.

Example 3. Kfin is not closed, therefore it is not definable.

Here is an easy exercise (when using Shinji’s theorem): Prove that for any
m ∈ N, the following set is not definable:

Km = {z ∈ ASS|z gives at least m atoms the value 1}
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3 Proof

We will prove Shinji’s Theorem by proving the following two claims:

Claim 1. Any definable set of assignments is closed.

Claim 2. Any closed set of assignments is definable.

Proof of Claim 1. Let {zn}∞n=0 ⊆ K be a convergent sequence of assignments,
and let y = limn→∞ zn. Assume by contrast that y /∈ K. K is definable by some
set of formulae Φ ⊆ WFF. Therefore, since y /∈ K = MOD(Φ), then y 6� Φ.
Thus there exists ϕ ∈ Φ such that y 6� ϕ. However, ∀n, zn ∈ K, so zn � ϕ.

ϕ ∈ WFF, and is therefore finite — thus, there exists a maximal index i
of atoms which appear in ϕ. However, limn→∞ zn = y, so there exists Ni such
that for all n > Ni, zn and y agree on the first i atoms. We know that zNi � ϕ,
and since zNi and y agree on all of the atoms which appear in ϕ, we have that
y � ϕ, a contradiction.

Lemma 1. If K is closed, then for any assignment y /∈ K, there exists a
formula ϕK

y such that y � ϕK
y , but for all z ∈ K, z 6� ϕK

y .

Proof of Lemma 1. We will construct the sequence of formulae Bi to be the
formulae which are satisfied exactly by assignments which agree with y on the
first i atoms. Formally,

bi =

{
pi, y(pi)
¬pi, ¬y(pi)

, Bi =
∧
j<i

bj

Now we will show that there exists i for which Bi = ϕK
y . Since by construc-

tion, ∀i ∈ N, y � Bi, it remains to show that there exists such i that for all
z ∈ K, z 6� Bi.

Assume by contrast that such i does not exist. Therefore, for any i ∈ N there
exists zi such that zi � Bi. By definition of Bi, this means that zi agrees with
y on the first i atoms. Consider {zi}∞i=0 — we have shown that limi→∞ zi = y.
However, y /∈ K, so this is a contradiction to K being closed.

Proof of Claim 2. Assume K is closed. Let Y = ASS \ K. By Lemma 1, for
all y ∈ Y there exists ϕK

y such that y � ϕK
y and for all z ∈ K, z 6� ϕK

y . Let
Φ =

{
ϕK

y ∈ WFF|y ∈ Y
}
, and Φ = {¬ϕ ∈ WFF|ϕ ∈ Φ}. Φ defines K:

• If z ∈ K, then for all ϕ ∈ Φ, since ϕ = ¬ϕK
y for some y ∈ Y , we know

that z 6� ϕK
y , thus z � ϕ.

• If z � Φ, then by construction of Φ, for all y ∈ Y , z 6� ϕK
y . This means

that for all y ∈ Y , z 6= y; therefore z /∈ Y which implies z ∈ K.
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