$$\frac{\Delta}{4} = \sqrt{\left(\frac{b}{2}\right)^2 - ac}$$
 , $\Delta = \sqrt{b^2 - 4ac}$, $ax^2 + bx + c = a(x - x_1)(x - x_2)$.1

$$x_1+x_2=-rac{b}{a}$$
 , $x_1\cdot x_2=rac{c}{a}$: וייטה למשוואה ריבועית. 2

. פתרונות המשוואה הריבועית:
$$x_{1,2}=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}=\dfrac{-\dfrac{b}{2}\pm\sqrt{\left(\dfrac{b}{2}\right)^2-ac}}{a}$$
 שני שורשים ממשיים ש $\Delta>0\Leftrightarrow\Delta$ שני שורשים ממשיים ש $\Delta>0$

$$\Delta=0\Leftrightarrow$$
 שני שורשים ממשיים שווים שני שורשים ממשיים שונים $\Delta>0\Leftrightarrow$ שני שורשים ממשיים שווים $\Delta>0$.4

$$x_1 \cdot x_2 = \frac{c}{a} < 0 \Leftrightarrow$$
 שני שורשים שוני סימן $\Delta < 0 \Leftrightarrow$ (מרוכבים) שני שורשים לא ממשיים (מרוכבים). 5

$$\begin{cases} \Delta \geq 0 \\ x_1 + x_2 = -\frac{b}{a} > 0 \Leftrightarrow \text{ שני שורשים שליליים} \end{cases}, \begin{cases} \Delta \geq 0 \\ x_1 + x_2 = -\frac{b}{a} > 0 \Leftrightarrow \text{ otherwise} \end{cases} .6$$

$$\begin{cases} x_1 + x_2 = -\frac{b}{a} > 0 \Leftrightarrow \text{ otherwise} \end{cases} .6$$

$$\begin{cases} x_1 \cdot x_2 = \frac{c}{a} > 0 \end{cases}$$

- במיקום שורשים, יש לנרמל את המשוואה וכך פשוט יותר לחקור אותה.
- . המשוואה ליניארי ליניארי מקרה לשכוח לא לשכוח ל $a \neq 1$ מקרה ליניארי ל $a \neq 1$

$$x$$
 על על , $t=|x|$, לחקור לפי , $t=|x|$, שלסמן לסמן , $t=|x|$, שלסמן , $t=|x|$, שלסמן $t=|x|$, לחקור לפי ז ולהשליך על .9

. בהתאם.
$$t$$
 לחקור לפי , $t=x^2\geq 0$, יש לסמן , $ax^4+bx^2+c=0$ ולהשליך על . משוואה דו-ריבועית,

.11. כנ"ל במקרה של
$$t=\sqrt{x}\geq 0$$
 יש לסמן - $ax+b\sqrt{x}+c=0$ ולהשליך על בהתאם.

$$S = \left| \int_{x_1}^{x_2} (f(x) - g(x)) dx \right|$$
 שטח בין שתי פונקציות: .1

$$V = \pi \int\limits_{x_0}^{x_2} ig(f(x) - g(x)ig)^2 dx$$
 נפח סיבוב בין שתי פונקציות: .2

3. כאשר בתחום האינטגרל המסוים הפונקציות נחתכות, יש להפריד את התחום.

$$C_n^k = \frac{n!}{k!(n-k)!}$$
 בירופים מתוך n , ללא חשיבות לסדר: k .1

$$P_n = n!$$
 - עצמים מתוך n עצמים מתוך $k = n$ מקרה פרטי ש. $V_n^k = \frac{n!}{(n-k)!}$ מקרה לסדר: n עצמים מתוך n עצמים מתוך n עצמים. 2

$$C_n^{n-2} = C_n^2 = \frac{n(n-1)}{2}$$
 $C_n^k = C_n^{n-k}$ $C_n^0 = C_n^n = 1$ $C_n^1 = n$.3

$$P_{n}^{\ \prime} = (n-1)!$$
 תמורות של n עצמים במעגל עם סימטריה: .4

$$(1+1)^n = C^0 + C^1 + C^2 + \dots + C^n = 2^n$$
 : Some party of $C^n = C^n$

 $(1+1)^n = C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n = 2^n$.5 סכום שורת פסקל: .6 סכום האיברים במקומות הזוגיים – סכום האיברים במקומות הזוגיים .6

$$(1-1)^n = C_n^0 - C_n^1 + \dots - C_n^n = 0^n$$

$$C_n^0 + C_n^2 + \dots + C_n^{2k} = C_n^1 + C_n^3 + \dots + C_n^{2k+1}$$

$$1^x = 1$$
 כי $1 \neq a > 0$ וגם $b > 0$ כי $a^x = b \Leftrightarrow \log_a b = x$.1

$$\log_{10} = \log$$
 , $\log_e = \ln$.2

$$\frac{\log_a b}{\log_a c} = \log_c b$$
 .3 מעבר בסיס:

$$\log_a b = \frac{\log_b b}{\log_b a} = \frac{1}{\log_b a}$$
 מקרה פרטי של העברת בסיס: .4

$$\log_a(x) + \log_a(y) = \log_a(x \cdot y) \quad .5$$

$$\log_a(x) - \log_a(y) = \log_a\left(\frac{x}{y}\right) \quad .$$

$$a \log_b(x) = \log_b(x^a)$$
 .

.8 אביך את הערך המוחלט.
$$a=2n+1$$
 כאשר $\log_b(x^a)=a\log_b|x|$.8

 $a^x > a^y$ אז $a^x > a^y$ מתהפך כיוון האי-שיווין: אייביים ולוגריתמיים: כאשר הבסיס וווונים מעריכיים ולוגריתמיים: כאשר הבסיס

.
$$x>y$$
 : נשמר כיוון האי-שיווין $a^x>a^y$ אז $a>1$ כאשר הבסיס

$$x > y$$
 אז $0 < a < 1$ וגם $\log_a x < \log_a y$ דוגמא נוספת:

$$x < y$$
 אז $a > 1$ וגם $\log_a x < \log_a y$

.10. באי-שיוויונים מעריכיים ולוגריתמיים יש לזכור לבדוק את המקרה שהבסיס הוא 1.

(מועמדים ל x_0 - נקודות אי הגדרה וקצוות תחומי הגדרה אסימפטוטה אנכיות: ב t_0 אסימפטוטות אנכיות: שנה אסימפטוטה אינכיות: שנה אסימפטוטה אינכיות: ב t_0 שנה אסימפטוטה אינכיות: אסימפטוטות אנכיות:

$$b=\lim_{x o \infty^\pm}ig(f(x)-axig)$$
 , $a=\lim_{x o \infty^\pm}rac{f(x)}{x}$: $y=ax+b$ אסימפטוטות כלליות מהצורה .2

אזי:
$$\frac{0}{0}$$
 א או $\frac{\infty}{\infty}$ אוי: כלל לופיטל: כאשר הגבול המתקבל הוא מצורה של

$$0.0 \cdot \frac{0}{0}$$
 או $0.\infty \cdot \frac{1}{\infty}$ או $0.\infty \cdot \frac{1}{0}$ ניתן להביא לצורה של הביא $\frac{f(x)}{g(x)} = \lim_{x \to x_0, \infty} \frac{f'(x)}{g'(x)}$ ניתן להביא לצורה של $\frac{f'(x)}{g'(x)}$

פולינומים

$$r = p(a): a$$
 ב שווה לערך הפולינום ב $p(x)$ ב חלוקת $p(x)$ ב .1

.
$$p(x)$$
 הוא שורש של $a \Leftrightarrow (x-a)|p(x) \Leftrightarrow p(a) = 0$.2

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a(x-x_1)(x-x_1) \dots (x-x_n)$$
 .3 .4 .4

שורשים קומפלקסים
$$n$$
 יש בדיוק n שורשים קומפלקסים 4.

$$a_i = b_i \left(\forall 0 \le i \le n \right)$$
 אז $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$.5

$$\prod_{i=1}^n x_i = (-1)^n \frac{a_0}{a_n}$$
 , $\sum_{i=1}^n x_i = -\frac{a_{n-1}}{a_n}: n$ מייטה עבור פולינום מסדר .6

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, (\forall 0 \le i \le n, a_i \in \mathbb{R})$$
 יהי

... ב) אם
$$\dfrac{-}{z_0}$$
 שורש שלו, גם $\dfrac{-}{z_0}$ שורש שלו, אז ב) אם ב) ב אם ב) ב $\left\{ \begin{matrix} p \mid a_0 \\ q \mid a_n \end{matrix} \right\}$ שורש ממשי שלו, אז $\dfrac{p}{q}$ שורש ממשי שלו, אז

$$x^2-2\operatorname{Re}(z_0)+\left|z_0\right|^2$$
 אז צורתו: $\overline{z_0}$ א ששורשיו א בינום אם אם מבוקש טרינום .8

$$a_k = \frac{p^{(k)}(x_0)}{k!} : x_0$$
 מקדם של פולינום המפותח סביב .9

.1 יהיה
$$x^n$$
 נרמול פולינום – חלוקתו ב a_n כדי שמקדם 10

מספרים מרוכבים

$$a+bi=c+di \Leftrightarrow a=c; b=d$$
 $i^2=-1, a,b \in \mathbb{R}, z=\overline{a+bi}$.1

$$\vec{0}$$
 מ מודול: $|z| = \sqrt{a^2 + b^2}$: זהו אורך הווקטור ; $z = \sqrt{a^2 + b^2}$: מודול: .2

$$\tan \theta = \frac{b}{a}$$
 כך ש $\arg(z) = \theta : z$ ארגומנט של .:

$$\theta_{z} = -\theta_{\overline{z}}$$
, $|\overline{z}| = |z|$, $\overline{z} = a - bi$.

.5 תוצאות חשובות:

$\overline{z^n} = (\overline{z})^n$	$\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$	$ z \cdot w = z \cdot w $	$z \cdot \overline{z} = \left z \right ^2$	$z + \overline{z} = 2\operatorname{Re}(z)$
$\left z^{n}\right = \left z\right ^{n}$	$\left \frac{z}{w} \right = \frac{ z }{ w }$	$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$	$\overline{z \pm w} = \overline{z} \pm \overline{w}$	$z - \overline{z} = 2i\operatorname{Im}(z)$

$$z = a + ib = r(\cos\theta + i\sin\theta) = rcis\theta$$
 .6

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} cis(\theta_1 - \theta_2) \qquad z_1 \cdot z_2 = r_1 r_2 cis(\theta_1 + \theta_2) \qquad z_3 \cdot z_4 = r_1 r_2 cis(\theta_1 + \theta_2) \qquad z_5 \cdot z_5 = r_1 r_2 cis(\theta_1 + \theta_2) cis(\theta_1 + \theta_2) \qquad z_5 \cdot z_5 = r_1 r_2 cis(\theta_1 + \theta_2) cis(\theta_1 + \theta_2) \qquad z_5 \cdot z_5$$

$$z^n = r^n cis(n\theta)$$
 :8.

$$\sqrt[n]{z} = \sqrt[n]{r}cis\left(\frac{\theta + 2\pi k}{n}\right), k = 0, 1, ..., n - 1 \quad .9$$

$$z$$
 מתאר את מרחק $\left|z-(a+bi)
ight|$.10

. (הצמוד גם נגדי),
$$\left|w_k\right|^2 = w_k \cdot \overline{w_k} = 1 \to \overline{w_k} = \frac{1}{w_k}$$
 ולכן $w_k = \sqrt[n]{1}$ (הצמוד גם נגדי). $w_k = \sqrt[n]{1}$

<u>סדרות ואינדוקציה</u>

$$a_n = S_n - S_{n-1} : S_n(n)$$
 כאשר נתון מציאת a_n כאשר נתון .1

. נובע מ (1) ש עם
$$S_n(n) = zn^2 + wn$$
 אז מדובר בסדרה חשבונית.

3. <u>לא ניתן</u> להוכיח באינדוקציה אי שיווין כשבצידו האחד מספר קבוע – יש להיעזר באינדוקציה אחרת.

4. לעיתים ניתן להוכיח טענה גם לא בעזרת אינדוקציה, בעיקר גם ביטויים טריגונומטריים – יש לפשט את הביטוי.

<u>וקטורים</u>

. ממישור ולחתוך אותו עם המישור ומהנורמל ומהנורמל אותו ומרכיב ישר הרכיב ישר ההרכיב ישר מהנקודה ולחתוך אותו עם איט איט פור ולחתוך אותו עם איט פור: יש להרכיב ישר אותו עם המישור. מציאת היטל נקודה ולחתוך אותו עם המישור. יש

$$M(x_0+lpha a,y_0+lpha b,z_0+lpha c)$$
 על ישר $P(x_1,y_1,z_1)$ לבטא את ההיטל ע"י: ℓ : ℓ

. שטח פירמידה הנוצר ע"י
$$\vec{v}$$
, הוא $\left|\frac{1}{6}\vec{v} \cdot (\vec{u} \times \vec{w})\right|$ כי מקבילון מורכב משתי מנסרות שוות נפח שמורכבות כ"א מ-3 פירמידות שוות נפח.

$$\ell_2$$
 אעל M_1 וגם $\vec{v}=a\cdot\vec{u}$ איז מקבילים $\ell_2=M_2+eta \vec{u}$ ו ו $\ell_1=M_1+lpha \vec{v}$.4

$$\ell_2$$
 על M_1 על $\vec{v}=a\cdot\vec{u}$ אין מתלכדים $\ell_2=M_2+\beta\vec{u}$ ו $\ell_1=M_1+\alpha\vec{v}$ שרים. 5

$$\ell_1$$
 וגם על ℓ_2 וגם קיימת איז וגם פיימת $ec v
eq a \cdot ec u \Leftrightarrow 1$ נחתכים וגם על וו $\ell_1 = M_1 + lpha ec v$ וגם על .6

. ישרים
$$\vec{v} \neq a \cdot \vec{u} \Leftrightarrow$$
 מצטלבים $\ell_2 = M_2 + \beta \vec{u}$ ו $\ell_1 = M_1 + \alpha \vec{v}$ ישרים.